National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Molecular mechanisms of checkpoint signalling and termination
Benada, Jan ; Macůrek, Libor (advisor) ; Brábek, Jan (referee) ; Truksa, Jaroslav (referee)
Cells employ an extensive signalling network to protect their genome integrity, termed DNA damage response (DDR). The DDR can trigger cell cycle checkpoints which prevent cell cycle progression and allow repair of DNA damage. The failures in these safeguarding mechanism are represented by serious human malignancies, most predominantly by cancer development. This work aims to contribute to the understanding of how do the cells negatively regulate DDR and cell cycle checkpoint signalling. We focused mainly on Wip1 (PPM1D) phosphatase, which is a major negative regulator of DDR and is indispensable for checkpoint recovery. Firstly, we have shown that Wip1 is degraded during mitosis in APC-Cdc20 dependent manner. Moreover, Wip1 is phosphorylated at multiple residues during mitosis, resulting in inhibition of its enzymatic activity. We suggest that the abrogation of Wip1 activity enables cells to react adequately even to low levels of DNA damage encountered during unperturbed mitosis. In the following publication, we have investigated why the mitotic cells trigger only early events of DDR and do not proceed to the recruitment of DNA repair factors such as 53BP1. We showed that 53BP1 is phosphorylated within its ubiquitination-dependent recruitment domain by CDK1 and Plk1. These phosphorylations prevents...
A potential role of DAXX in cell cycle arrest and cellular senescence
Valášek, Ján ; Hanzlíková, Hana (advisor) ; Vopálenský, Václav (referee)
Death domain-associated protein 6 (DAXX) is a multifunctional protein involved in diverse cellular processes. It acts as a histone chaperone or regulator of transcription and apoptosis, in which is its role quite controversial. DAXX also participates in regulation of cell DNA damage response (DDR). DAXX co-creates and stabilizes complex with Mdm2, which negatively regulates the stability of p53, an important tumor suppressor, which is a part of signalling node in the DDR. If DNA damage is not lethal for the cell and unables it to proliferate, the irreversible state of cell cycle called cellular senescence takes place. Under physiological conditions, induction of senescence can prevent the development of tumorigenesis. Therefore, the description of mechanisms involved in the induction of senescence has potential clinical significance. In my thesis, I aimed to determine changes in the level of DAXX protein in senescent cells and to characterize the manner of its regulation. In tumor cells MCF-7 and primary BJ fibroblasts, I observed decrease in DAXX protein level and its regulation. I tested the hypothesis according to which an increase in DAXX level before DNA damage canprevent induction of cellular senescence, or increase in its expression during senescence can cause recovery of cell proliferation....
Dynamics of selected DNA damage response proteins
Benada, Jan ; Hodný, Zdeněk (advisor) ; Kuthan, Martin (referee)
DNA damage response (DDR) represents a vital signaling network that protects genome integrity and prevents development of cancer. Therefore the study of DDR is of a crucial clinical importance and DDR proteins are promising therapeu- tic targets. Although the great advances have been made mapping out interac- tions between individual DDR proteins, better understanding of complex behav- ior of this network is still needed. One approach, which might help us in this task, is to describe the dynamics of key proteins under different conditions. The first objective of this study was to investigate whether the temporal dynamics of selected DDR proteins differ upon different genotoxic insults, particularly upon γ- irradiation and UV-C irradiation. We showed that under certain insult some DDR proteins exhibit a monotone continuous activation pulse, while the activation of others triggers a series of pulses. We observed a previously described pulsative dynamics of p53 after γ-irradiation in MCF7 cells. Interestingly, we detected a monotone increase of p53 in U2OS after γ-irradiation and similar dynamics upon UV-C irradiation. We suggest that p53 dynamics depends on the presence or ab- sence of effective negative feedback loops between the upstream p53-activating kinases and Wip1 phosphatase. In the second...
Molecular mechanisms of checkpoint signalling and termination
Benada, Jan ; Macůrek, Libor (advisor) ; Brábek, Jan (referee) ; Truksa, Jaroslav (referee)
Cells employ an extensive signalling network to protect their genome integrity, termed DNA damage response (DDR). The DDR can trigger cell cycle checkpoints which prevent cell cycle progression and allow repair of DNA damage. The failures in these safeguarding mechanism are represented by serious human malignancies, most predominantly by cancer development. This work aims to contribute to the understanding of how do the cells negatively regulate DDR and cell cycle checkpoint signalling. We focused mainly on Wip1 (PPM1D) phosphatase, which is a major negative regulator of DDR and is indispensable for checkpoint recovery. Firstly, we have shown that Wip1 is degraded during mitosis in APC-Cdc20 dependent manner. Moreover, Wip1 is phosphorylated at multiple residues during mitosis, resulting in inhibition of its enzymatic activity. We suggest that the abrogation of Wip1 activity enables cells to react adequately even to low levels of DNA damage encountered during unperturbed mitosis. In the following publication, we have investigated why the mitotic cells trigger only early events of DDR and do not proceed to the recruitment of DNA repair factors such as 53BP1. We showed that 53BP1 is phosphorylated within its ubiquitination-dependent recruitment domain by CDK1 and Plk1. These phosphorylations prevents...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.